Hard constraint satisfaction problems have hard gaps at location 1

نویسندگان

  • Peter Jonsson
  • Andrei A. Krokhin
  • Fredrik Kuivinen
چکیده

An instance of Max CSP is a finite collection of constraints on a set of variables, and the goal is to assign values to the variables that maximises the number of satisfied constraints. Max CSP captures many well-known problems (such as Max k-SAT and Max Cut) and is consequently NP-hard. Thus, it is natural to study how restrictions on the allowed constraint types (or constraint languages) affect the complexity and approximability of Max CSP. The PCP theorem is equivalent to the existence of a constraint language for which Max CSP has a hard gap at location 1, i.e. it is NP-hard to distinguish between satisfiable instances and instances where at most some constant fraction of the constraints are satisfiable. All constraint languages, for which the CSP problem (i.e., the problem of deciding whether all constraints can be satisfied) is currently known to be NP-hard, have a certain algebraic property. We prove that any constraint language with this algebraic property makes Max CSP have a hard gap at location 1 which, in particular, implies that such problems cannot have a PTAS unless P = NP. We then apply this result to Max CSP restricted to a single constraint type; this class of problems contains, for instance, Max Cut and Max DiCut. Assuming P $\neq$ NP, we show that such problems do not admit PTAS except in some trivial cases. Our results hold even if the number of occurrences of each variable is bounded by a constant. We use these results to partially answer open questions and strengthen results by Engebretsen et al. [Theor. Comput. Sci., 312 (2004), pp. 17--45], Feder et al. [Discrete Math., 307 (2007), pp. 386--392], Krokhin and Larose [Proc. Principles and Practice of Constraint Programming (2005), pp. 388--402], and Jonsson and Krokhin [J. Comput. System Sci., 73 (2007), pp. 691--702]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hard constraint satisfaction problems have hard gaps at location 1 1

An instance of the maximum constraint satisfaction problem (Max CSP) is a nite collection of constraints on a set of variables, and the goal is to assign values to the variables that maximises the number of satis ed constraints. Max CSP captures many well-known problems (such as Max k-SAT and Max Cut) and is consequently NP-hard. Thus, it is natural to study how restrictions on the allowed cons...

متن کامل

Ruling Out Polynomial-Time Approximation Schemes for Hard Constraint Satisfaction Problems

The maximum constraint satisfaction problem (Max CSP) is the following computational problem: an instance is a nite collection of constraints on a set of variables, and the goal is to assign values to the variables that maximises the number of satis ed constraints. Max CSP captures many well-known problems (such as Max k-SAT and Max Cut) and so is NP-hard in general. It is natural to study how ...

متن کامل

Quiet Planting in the Locked Constraint Satisfaction Problems

We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and first and second moment considerations; in particular the connection with the reconstruction on trees appears to be crucial. Our main result is the location of the h...

متن کامل

Improving Evolutionary Algorithms for Efficient Constraint Satisfaction

Hard or large-scale constraint satisfaction and optimization problems, occur widely in artiicial intelligence and operations research. These problems are often diicult to solve with global search methods, but many of them can be eeciently solved by local search methods. Evolutionary algorithms are local search methods which have considerable success in tackling diicult, or ill-deened optimizati...

متن کامل

Dynamic Constraint Weighting for Over-Constrained Problems

Many real-world constraint satisfaction problems (CSPs) can be over-constrained but contain a set of mandatory or hard constraints that have to be satisfied for a solution to be acceptable. Recent research has shown that constraint weighting local search algorithms can be very effective in solving a variety of CSPs. However, little work has been done in applying such algorithms to over-constrai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 410  شماره 

صفحات  -

تاریخ انتشار 2009